The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.

نویسندگان

  • Simon Schiml
  • Friedrich Fauser
  • Holger Puchta
چکیده

The CRISPR/Cas nuclease is becoming a major tool for targeted mutagenesis in eukaryotes by inducing double-strand breaks (DSBs) at pre-selected genomic sites that are repaired by non-homologous end joining (NHEJ) in an error-prone way. In plants, it could be demonstrated that the Cas9 nuclease is able to induce heritable mutations in Arabidopsis thaliana and rice. Gene targeting (GT) by homologous recombination (HR) can also be induced by DSBs. Using a natural nuclease and marker genes, we previously developed an in planta GT strategy in which both a targeting vector and targeting locus are activated simultaneously via DSB induction during plant development. Here, we demonstrate that this strategy can be used for natural genes by CRISPR/Cas-mediated DSB induction. We were able to integrate a resistance cassette into the ADH1 locus of A. thaliana via HR. Heritable events were identified using a PCR-based genotyping approach, characterised by Southern blotting and confirmed on the sequence level. A major concern is the specificity of the CRISPR/Cas nucleases. Off-target effects might be avoided using two adjacent sgRNA target sequences to guide the Cas9 nickase to each of the two DNA strands, resulting in the formation of a DSB. By amplicon deep sequencing, we demonstrate that this Cas9 paired nickase strategy has a mutagenic potential comparable with that of the nuclease, while the resulting mutations are mostly deletions. We also demonstrate the stable inheritance of such mutations in A. thaliana.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.

Engineered nucleases can be used to induce site-specific double-strand breaks (DSBs) in plant genomes. Thus, homologous recombination (HR) can be enhanced and targeted mutagenesis can be achieved by error-prone non-homologous end-joining (NHEJ). Recently, the bacterial CRISPR/Cas9 system was used for DSB induction in plants to promote HR and NHEJ. Cas9 can also be engineered to work as a nickas...

متن کامل

Targeted mutagenesis using CRISPR/Cas system in medaka

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system-based RNA-guided endonuclease (RGEN) has recently emerged as a simple and efficient tool for targeted genome editing. In this study, we showed successful targeted mutagenesis using RGENs in medaka, Oryzias latipes. Somatic and heritable mutations were induced with high efficiency at the targeted ge...

متن کامل

Construction of a recombinant vector for site-directed mutagenesis in Salmonella typhimurium

BACKGROUND: Among all common techniques in sitedirectedmutagenesis, λ Red recombinase system has beenwidely used to knock out chromosomal genes in bacteria. In thismethod, there is always the risk of DNA Linear digestion byhost's restriction enzymes that leads to the low frequency ofrecombination. OBJECTIVES:To overcome this, we constructeda recombinant vector to disrupt phoP gene in Salmonella...

متن کامل

Application of the Novel CRISPR / Cas Technology in Diagnosis of COVID-19 Strains

The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused respiratory infection, resulting in more than two million deaths globally and hospitalizing thousands of people until 2021. A considerable percentage of the SARS-CoV-2 positive patients are asymptomatic or pre-symptomatic carriers, facilitating the viral spread in the community by their social activities. Hence, i...

متن کامل

Specific and heritable gene editing in Arabidopsis.

Targeted gene editing could offer tremendous advantages over traditional plant breeding to create new cultivars with advantageous combinations of alleles, especially when stacking of important traits is needed for crop improvement. Traditional methods of combining desirable alleles of different genes involve time-consuming crosses and selections, and in some cases such as combining closely link...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 80 6  شماره 

صفحات  -

تاریخ انتشار 2014